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Number and Number Sense, A Graduate  
Mathematics Course for Middle School Teachers 

Abstract 
The Arizona Teaching Institute (ATI) is a partnership between the University of Arizona and 
Tucson Unified School District.  ATI has developed and implemented a Master’s degree in 
Middle School Mathematics Leadership for middle school teachers, a Certificate in Mathematics 
Teacher Mentoring for secondary-certified teachers, and a postdoctoral fellowship in Teacher 
Preparation for recent mathematics Ph.D. graduates.  The Master’s degree in Middle School 
Mathematics Leadership is designed as a three-year, part-time degree consisting of two years of 
mathematics and education coursework, followed by a year of fieldwork.  Courses are offered 
during the summer and part-time during the academic year.  For example, the Numbers and 
Number Sense course described here addressed algorithms for operations; properties of 
arithmetic operations; and meanings for integers, rational numbers, and real numbers with a 
special emphasis on fractions.  Instructors deliberately incorporated review of elementary and 
middle-school level mathematics concepts into explorations of more advanced topics.  The 
course attended to pedagogical content knowledge through discussions about common 
misconceptions and strategies for presenting difficult material, interwoven with discussions of 
the mathematics disciplinary content.  Although anticipated and encouraged by facilitators, these 
discussions were often participant-initiated, rather than planned.  The sequence of mathematics 
courses addresses logic and proof as mathematical ways of knowing, and those learning goals are 
primarily dealt with in the Geometry and Algebra courses.  In addition, the Numbers and 
Number Sense course modeled the process of making distinctions among related mathematical 
constructs as a way of knowing and understanding mathematics. 

Introduction 

The University of Arizona (UA) and Tucson Unified School District (TUSD) formed a 
partnership to develop and implement the Arizona Teacher Institute (ATI), a vertically 
integrated, nationally replicable program with the following components: 

 A Master’s Degree in Middle School Mathematics Leadership for middle school teachers, 
targeted at the large proportion of teachers who are elementary certified, 

 A Certificate in Mathematics Teacher Mentoring for secondary-certified teachers, 
 A Postdoctoral Fellowship in Teacher Preparation for recent mathematics Ph.D.’s. 

The targets for these ATI programs are a steady state of:  11 Master’s candidates beginning a 
three year program each summer, 2 Certificate candidates each year in this one year program, 
and 2 three-year post doctoral fellows.  The goals of the project are to: 

 Increase the number of middle school teacher leaders in the Tucson Unified School 
District and the Tucson area with a profound understanding of middle school 
mathematics and with the leadership skills to conduct effective professional development 
at their schools; 
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 Increase the number of faculty at the University of Arizona with a knowledge and 
understanding of how to support effective teacher preparation and in-service professional 
development; 

 Develop and establish a permanent, replicable Master’s Degree in Middle School 
Mathematics Leadership for producing middle school mathematics teacher leaders; 

 Through the Certificate in Mathematics Teacher Mentoring and Postdoctoral Fellowship 
in Teacher Preparation, train and certify a corps of mathematics teacher leaders and Ph.D.  
mathematicians from around the country who have the knowledge and understanding to 
implement courses for a Master’s program in their local areas; and 

 Develop a distance-learning version of the Master’s program that can be implemented 
nationally. 

The Institute provides instruction in both mathematics and pedagogy in varying proportions for 
the different components.  The focus of this article is the development of one course for the 
master’s degree.  All four core mathematics courses in the master’s program are team taught by 
mathematics faculty and master high school teachers.  The mathematics faculty will sometimes 
be trainees from the Postdoctoral Fellowship in Teacher Preparation, and the master high school 
teachers will usually be trainees from the Certificate in Mathematics Teacher Mentoring.  The 
courses were developed in a team effort among mathematics faculty, postdoctoral fellows, and 
high-school teachers in the ATI program. 

Master’s Degree in Middle School Mathematics Leadership. 

The largest component of the ATI effort is the development of a new Master’s Degree in Middle 
School Mathematics Leadership.  This master’s program is designed as a three-year, part-time 
degree, with the target audience being middle school teachers who have elementary certification.  
The program, however, should be flexible enough to be a valuable educational experience for 
any teacher who has responsibility for middle school mathematics instruction.  Further, so that 
the ATI program can become an integrated part of the Mathematics Department’s efforts, all the 
new courses should be of value to any appropriate student at the university interested in the 
teaching of school mathematics. 

The Master’s degree itself consists of two years of courses in both mathematics and education 
taken in the summer or part-time during the year, and one year of fieldwork.  The course work 
for the degree will consist of four four-unit mathematics courses (The Number Line, Algebra, 
Geometry, Probability and Statistics), two three-unit education courses (Research on the 
Learning of Mathematics - Mathematics Department, and Disciplined Inquiry in Education - 
Department of Teacher and Teacher Education), three to four units in mentoring, and six units 
devoted either to a practicum or a thesis, for a total of 31–32 units.  In the current 
implementation, there is a one unit course in mentoring, and an additional three unit education 
course (Language and Culture in the Teaching of Mathematics.) 

ATI operates under the well-supported premise that improved student achievement can be a goal 
and a result of professional development.  In a study by Hill, Rowan, & Ball (2005), the 
researchers found that teachers’ mathematical knowledge for teaching positively predicted 
student gains in mathematics achievement during the first and third grades.  The authors 
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indicated that efforts to improve teachers' mathematical knowledge through content-focused 
professional development and preservice programs will improve student achievement.  In a 
report on professional development in mathematics Mundry & Boethel (2005) pointed out that 
experienced teachers who know both their content and effective instructional strategies tend to 
produce higher academic achievement outcomes by their students.  Thus, the outcomes hoped for 
from this project are increased student achievement as the result of increased teacher knowledge. 

In more detail, the expected outcomes of this project fall into two categories:  outcomes for the 
members of the partnership, and local and national outcomes.  For the partnership, we would 
hope to find a graduate of the Master’s Degree in Middle School Mathematics Leadership in as 
many of the 19 middle schools in Tucson Unified School District as possible.  We expect these 
graduates to have the skills to help with or direct professional development with teachers at their 
school.  As a consequence after the NSF funded part of the project, we expect increased 
achievement for 500 middle school students in TUSD as a result of challenging courses and 
curricula taught by Middle School Mathematics Leaders and the teachers they work with.  Also, 
the Master’s Degree in Middle School Mathematics Leadership will increase access by all 
students to highly skilled teachers and thus more challenging courses and better informed 
curricula.  Further, as a result of the ATI interactions between candidates for Certificate in 
Mathematics Teacher Mentoring and the Master’s Degree in Middle School Mathematics 
Leadership, we expect to see a lasting and growing community of mathematics educators that 
crosses grade levels, and school and district boundaries.  The overall goal of the Arizona Teacher 
Institute, however, is to increase middle school teachers’ access to high quality professional 
development through increasing mathematics faculty capacity at the University of Arizona for 
their involvement in teacher recruitment, teacher retention, and other teacher preparation 
programs. 

Middle School Mathematics 

Each of the four 4-unit core mathematics courses in the Master’s degree (Number and Number 
Sense, Algebra, Geometry, and Probability and Statistics) has an emphasis on how logic and 
proof undergird the mathematics and provide meaning and life to it, and each incorporates 
technology and applications to other fields as appropriate.  Roughly the courses are planned as 
two units of mathematics instruction, and two units devoted to how to teach the mathematics.  
ATI has a content advisory board consisting of two mathematicians, a mathematics education 
researcher, and a high school teacher.  This board reviewed the initial plans for each of the 
content courses, and will review full content once the materials for all four courses are complete.  
We attempted initially to find appropriate existing course materials for each course.  We 
considered adapting texts designed for elementary school teacher preparation such as the texts of 
Parker and Baldridge, Beckmann, or the materials used at the Vermont Mathematics Institute.  
We agreed that our final materials must satisfy the dual requirements of (a) clear, correct, and 
rigorous mathematics (b) support for pedagogical projects linked to state and national standards 
for teaching and curriculum. 

Our starting point was the Arizona Mathematics Standard Articulated by Grade Level 2003 and 
its planned (and now implemented) 2008 Mathematics Standard Articulated by Grade Level 
(http://www.ade.state.az.us/standards/math/Articulated08/default.asp).  These standards were the 
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basis of our choice of course topics.  We also reflected the Principles and Standards for School 
Mathematics by the National Council of Teachers of Mathematics in planning for all four of the 
content courses.  Our primary target was middle school mathematics teachers who have 
elementary certification.  Typically middle school consists of grades 7 and 8; however in 
practice, a well prepared middle school mathematics teacher needs a strong foundation in a wider 
spread of topics.  Thus in setting the syllabi for these courses, we included topics from the 
standards for grades 6 and 9 as well. 

Of course, the experience of the principal investigators and their preparation for the project made 
many curriculum choices obvious.  We were often advised for the need of a thorough review of 
arithmetic procedures and the importance of Geometry and geometric intuition.  Also, we were 
warned that many elementary certified teachers have had little or no training in all in Algebra, 
perhaps including high school.  Teachers themselves often asked for help with the topics listed 
under probability and statistics.  The refrain we heard the most was “Fractions, fractions, and 
then more fractions.” 

The Number Line 

The course we designed, taught first, and have offered the most often is now called Number and 
Number Sense.  This is the first topic detailed in the Arizona Mathematics Standards, and the 
content that needed to be covered was rather clear.  This article will focus on this first course and 
reflect our experiences with the first two groups of participants. 

As of January 2010, a total of 36 people have taken the course; 6 taught elementary school; 2 are 
middle school supervisors; 2 were candidates in a degree program other than the project’s.  Thus 
there were 26 middle school mathematics teachers in the three offerings of the course.  There 
was no noticeable distinction between the various groups of participants except that the outside 
graduate students had more recent experience with some of the less familiar mathematical topics 
and far less actual classroom teaching experience.  It should be noted that three participants have 
dropped out of the degree program, and one of these was the teacher at the lowest grade level in 
the group. 

Mirroring the project goals, all content courses were set with the following objectives in mind. 

Project Objectives 

1. Allow middle school teacher leaders the opportunity to obtain a profound understanding 
of middle school mathematics and the leadership skills necessary to their professional 
development.   

2. Increase the number of faculty at the University of Arizona with a knowledge and 
understanding of how to support effective teacher preparation and in-service professional 
development;  

3. Provide additional training in the scientific and pedagogical issues of middle school 
mathematics for participants in the Certificate in Mathematics Teacher Mentoring and 
Postdoctoral Fellowship in Teacher Preparation;  
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4. Eventually develop a distance-learning version of all the courses in the Master’s program. 

Additionally we set course goals for the particular course, Number and Number Sense. 

Course Goals 

1. To build participant mastery and confidence in the use of fundamental mathematical 
principles and concepts involving natural numbers, integers, rational numbers and real 
numbers;  

2. To train participants to recognize abstract mathematical constructions in middle school 
mathematics materials and to develop effective pedagogical methods for presenting these 
difficult concepts in the best way possible, and 

3. To give participants the ability to read and understand new and different mathematical 
materials at levels both above and below where they teach, and to adapt new approaches 
and ideas to the middle school curriculum. 

The Course 

ATI faculty (A mathematics faculty member and an experienced school teacher) began by 
reviewing state and national middle school mathematics standards; setting out the course goals, 
and looking for available math texts.  In a number of discussions with various experts, we were 
advised that many middle school mathematics teachers lacked formal mathematics training and 
that we should include a thorough review of the mathematics taught in elementary school as part 
of the mathematics content in the degree program, and this course in particular.  At the same 
time, we wanted to be careful about presenting such a review in a way that might seem 
condescending to an experienced teacher.  One goal of the project is to create a collegial 
community of mathematics educators based on mutual respect for the professionalism of all its 
members and this is a very important concern in designing the first course new teachers will 
experience in the program. 

Two text books were chosen with these concerns in mind:  Mathematics for Elementary School 
Teachers by Sybilla Beckmann and Exploring the Real Numbers by Frederick Stevenson.  The 
Beckmann text is aimed primarily toward elementary teachers, but it will provide an excellent 
reference for the topics in school mathematics during and after the course.  The Stevenson text 
takes a more mathematically sophisticated approach and is aimed at a more experienced reader.  
The course takes a position somewhere between the different levels of these texts.  Whenever 
possible, the course material refers to specific sections of both texts where the topic under 
discussion could be found.  The choice of these two texts as supplementary to the course material 
was made specifically with Course Goal 3 in mind. 

Algorithms 
We begin the course with a topic that would be new to all the participants; however, we 
introduce a topic more directly relevant to their teaching very quickly afterwards.  Prior to the 
first course meeting the participants are sent a set of preliminary questions that would lead to the 
Euclidean Algorithm and eventually to continued fractions of rational and real numbers.  The 
questions are presented as an exploration of repeated application of the Division Algorithm of 
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Natural Numbers.  After a brief account of the division algorithm, the preliminary problem set 
presents the following task: 

For a mathematical exploration, take various pairs of natural numbers a and b with a < b.  The 
division algorithm gives a quotient and a remainder that is less than the divisor.  Do not just 
perform the division algorithm once, but do the algorithm again dividing the just found 
remainder into the recent divisor.  This will be possible because the remainder, when it exists, 
will be smaller than the previous divisor.  Keep this up until the process ends, or you get stuck 
in some sort of rut, or it becomes clear that it will never stop on its own. 
 
For example, start with 16 < 67.  Then 
 

67 = 16 * 4 + 3 
16 = 3 * 5 + 1 
3 = 1 * 3 

 
Since there is no remainder in the last line, we have nothing to divide by.  The process stops.  
For another example, start with 51 < 171. 
 

171 = 51 * 3 + 18 
51 = 18 * 2 + 15 
18 = 15 * 1+3 
15=3*50 

 
Again it stops when we reach a division with no remainder. 
 

1. Is it possible for a starting pair of numbers to never reach a conclusion in this process? 
Can it happen that it just produces more and more remainders and quotients forever? 
Can it happen that is gets stuck just repeating the same sequence of calculations over 
and over? 

2. Is there any mathematical value in this exploration besides as an arithmetic exercise?  
3. Can you think of any way of, or reason for, using this in your class? 

For the most part, the ATI participants are not experienced enough with unstructured 
explorations to make much progress on any of these questions.  Some participants do not even 
come up with the idea of choosing arbitrary pairs of integers to try and simply concentrate on the 
two examples provided.  Others do make progress and even notice that the process always did 
come to a conclusion. 

In its first meeting, the course begins with the participants discussing their ideas about this 
problem.  Building on these ideas the instructors begin a more directed exploration of these 
questions.  However, the purpose was not to fully investigate this process, but rather to give the 
participants more confidence in the power of examples in understanding an arithmetic process.  
The main objective, in this first class, is for the participants to completely understand that, 
because the remainder decreases in each step, the process must end with a division that produces 
no remainder.  We immediately stress the value of abstract reasoning in understanding 
mathematics as we work toward Course Goal 2. 
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Before all the questions raised by this first process are completely resolved, the next topic is 
introduced in a way analogous to the first. 

The repeated division process we just investigated started with a < b, and after that looks like 
this: 

Step 1:  b = aq1 + r1; r1 < a 
Step 2:  a = r1q2 + r2; r2 < r1 
Step 3:  r1 = r2q3 + r3; r3 < r2 
Step 4:  r2 = r3q4 + r4; r4 < r3 
Step 5:  r3 = r4q5 + r5; r5 < r4 
:::::  :::::: 

 
It is called the Euclidean Algorithm.  It is not part of the typical middle school curriculum, but 
it is an incredibly important idea that has real everyday applications. 
There is, however, another way to repeat the division algorithm that is definitely part of the 
curriculum that you teach every year.  This process also starts with any a and b, and repeats as 

Step 1:  b = aq0 + r1; r1 < a 
Step 2:  10r1 = aq1 + r2; r2 < a 
Step 3:  10r2 = aq2 + r3; r3 < a 
Step 4:  10r3 = aq3 + r4; r4 < a 
Step 5:  10r4 = aq4 + r5; r5 < a 
:::::  :::::: 

The participants are asked the same three questions about this second process.  This time, 
however, the participants seem quicker to note that there is no guarantee that the process will 
stop.  As it turns out, this process amounts to the decimal expansion of a rational fraction, and in 
time, the participants recognize it as such.  Once this occurs, the exploration of this second 
process leads naturally into a careful mathematical analysis of the typical long division algorithm 
taught in school.  The desired review of this process then appears as a natural part of an 
exploration of a new idea.  We try to follow this template while introducing every review of 
school mathematics, always presenting the review in the context of a new problem or a different 
approach.   

Rigor 
The major mathematical issue we grappled with while designing the course was how much we 
should justify the mathematics we covered and what level of rigor we should use.  The Arizona 
State Standards include a strand devoted to Structure and Logic.  These standards include 
specific requirements in 7th and 8th grade like: 

 Analyze a problem situation to determine the question(s) to be answered. 
 Communicate the answer(s) to the question(s) in a problem using appropriate 

representations, including symbols and informal and formal mathematical language. 
 Solve logic problems involving multiple variables, conditional statements, conjectures, 

and negation using words, charts, and pictures. 
 Demonstrate and explain that the process of solving equations is a deductive proof. 
 Identify simple valid arguments using if… then statements. 
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The high school standards for grades 9 and 10 include: 

 Draw a simple valid conclusion from a given if…then statement and a minor premise. 
 Construct a simple formal deductive proof. 
 Identify and explain the roles played by definitions, postulates, propositions and theorems 

in the logical structure of mathematics. 

Again we choose a gradual approach and introduce rigor in a practical context that illustrates 
how it clarifies observations made in specific calculations.  For example, the greatest common 
divisor of two natural numbers is an important notion in middle school mathematics.  Its name 
gives its definition, and students are taught to compute it using factorization.  To find the 
common divisors of 28 and 42, one finds the prime factors of both.  To start, a student writes 28 
as a product of divisors, say 4 and 7.  Now the divisor 4 can be written as the product of 2 and 2, 
but 7 has no proper factors.  In many middle school curricula, the result is displayed as a “factor 
tree,” but mathematically it just means 28= 2*2*7 where all three divisors are primes.  In a 
similar way, 42 = 2*3*7.  Middle school students are taught to assemble the greatest common 
divisor of these numbers by choosing all the prime factors the numbers have in common:  
2*7=14.  Indeed 14 is a common factor of 28 and 42, and no other common factor is greater than 
14.  Notice, however, that the process of computing the greatest common divisor does not 
actually illustrate the fact that 14 is the largest number in the list of numbers which divide both 
28 and 42. 

The Euclidean Algorithm gives another (more efficient) method for computing the greatest 
common divisor.  In the continued directed exploration of this process, participants are led to 
uncover this fact.  This method of finding the greatest common divisor is more efficient than 
factorization, but it rarely covered in schools.  The ATI participants see this as an amazing result. 

We ask the participants to discover the connection between the Euclidean Algorithm and greatest 
common divisors by tracing all the common divisors through a specific short example that also 
illustrates the name “greatest common divisor”: 

Starting with the numbers 672 and 420, we compute 
672 = 420 * 1 + 252, 
420 = 252 * 1 + 168, 
252 = 168 * 1 + 84, 
168 = 84 *2 + 0. 

 
Now compute: 

1. the common divisors of 672 and 420  
2. the common divisors of 420 and 252  
3. the common divisors of 252 and 168  
4. the common divisors of 168 and 84  
5. the common divisors of 84 and 0. 
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To get started with the first problem, participants must review the process of factoring integers 
into primes and methods for reassembling those primes into divisors.  The prime factorization of 
672 is 2*2*2*2*2*3*7; and its complete set of divisors is 

{1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 32, 42, 48, 56, 84, 96, 112, 168, 224, 336, 672}. 

The prime factorization of 420 is 2*2*3*5*7; and its complete set of divisors is 

{1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 28, 30, 35, 42, 60, 70, 84, 105, 140, 210, 420}. 

The divisors common in these sets are 

{1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84}. 

In fact, this collection of common divisors is the answer to all five questions.  To see that this is 
the case in question 5 the participants need to recognize that all natural numbers are factors of 0.  
That tends to lead to a class discussion about the value in making what at first seems to be a 
rather innocuous observation. 

We expect that the obvious pattern will emerge quickly enough that participants will avoid a 
lengthy calculation.  However, when the participants use this observation, the instructors 
immediately ask exactly why it works.  Participants are led to the observation that, when 
b = aq + r, the common divisors of b and a are also the common divisors of a and r.  This can be 
applied repeatedly to see that the common divisors of the pair 672 and 420 are eventually the 
common divisors of 84 and 0.  The main goal of this exercise is not to help participants 
appreciate the labor to be saved by seeing this pattern.  This exercise is meant to help the 
participants reach Course Goal 2, i.e., to train participants to recognize abstract mathematical 
constructions in middle school mathematics materials. 

The important mathematical idea behind this is the distributive property of arithmetic.  For all 
numbers a*(b + c) = a*b + a*c.  The Arizona Mathematics Standards include the all fundamental 
arithmetic properties in every grade past 6:  the commutative property, the associative property 
and the distributive property.  The commutative and associative properties of addition and 
multiplication are important, but when they occur in arithmetic, their implications can seem 
obvious.  The distributive property often provides additional meaning to an arithmetical 
expression, and it can lead to informative conclusions.  The distributive property is behind all 
sorts of middle school mathematics, from the normal algorithm for long multiplication to the 
well known “FOIL” method in algebra.  This property is used so frequently, however, that it is 
easy to miss if you are not looking out for it.  In the exercise above, ATI participants are directed 
to discover this powerful practical use for this simple abstract idea.  Our purpose is to train the 
participants to recognize the distributive rule when it occurs in any context. 

This careful analysis of the Euclidean Algorithm is a major step in building the profound 
knowledge of middle school mathematics that is a project goal.  This is the first really concrete 
example where a fundamental mathematical concept, the distributive rule, has a direct 
connection to a familiar middle school problem.  The application, however, is not at all familiar 
to the participants.  Thus covering the Euclidean Algorithm fits naturally into Course Goal 1. 
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Finally to illustrate this practical value of the Euclidean algorithm, we assigned several 
arithmetic problems where it can be applied: 

Reduce the following rational numbers into lowest terms: 

1. 55754176
99352576  

2. 22379571
99352576  

3. 120143
118627  

4. 120143
116749  

Solution 3: 
 
Using the repeated division process with a = 120143 and b = 118627, compute: 
 
Step 1: Find q1 and r1 that satisfy b = aq1 + r1  

118627=120143*0+118627   
so q1 = 0 and r1 = 118627  

Step 2:  Find q2 and r2 that satisfy a = r1q2 + r2 
120143=118627*1+1516 
so q2 = 1 and r2 = 1516 

Step 3:  Find q3 and r3 that satisfy r1 = r2q3 + r3  
118627=1516*78+379 
so q3 = 78 and r3 = 379 

Step 4:  Find q4 and r4 that satisfy r2 = r3q4 + r4 
1516=379*4 
so q4 = 4 and r4 = 0 

 
The last non-zero remainder in the series, 379, is the greatest common divisor of 120143 and 
118627.  Dividing both the numerator and denominator by 379, we find that  

120143
118627 = 

317
313 

The students are later shown how to use continued fractions to compute the reduced fraction 
from the partial quotients. The method is based on the expression of a real number as a continued 
fraction, which for rational numbers can be found using the Euclidean algorithm and written as: 

...

1
1

1

3

2

1






q
q

q
a

b

  

Calculating only a portion of this continued fraction provides an approximation of the actual 
number, and students are shown a shortcut using a table: 
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  q1 q2 q3  
A=0 B=1 A+B*q1=C B+C*q2=D C+D*q3=E … 
R=1 S=0 R+S*q1=T S+T*q2=U T+U*q3=V … 

The results C/T, D/U, E/V, … give increasingly accurate approximations of b/a.  For rational 
numbers the sequence ends and the reduced fraction appears in the final column of the complete 
chart.  Continuing with the example shown in the table, we use the partial quotients 0, 1, 78, and 
4 to get: 

4
178

1
1

1
0

120143

118627






 

The reduced fraction 313/317 appears in the final column of the chart: 

  q1=0 q2=1 q3=78 q4=4 

A=0 B=1 

A+B*q1=C 
0+1*0=0 
C=0 

B+C*q2=D 
1+0*1=1 
D=1 

C+D*q3=E 
0+1*78=78 
E=78 

D+E*q4=F 
1+78*4=313 
F=313 

R=1 S=0 

R+S*q1=T 
1+0*0=1 
T=1 

S+T*q2=U 
0+1*1=1 
U=1 

T+U*q3=V 
1*78+1=79 
V=79 

U+V*q4=W 
1+79*4=317 
W=317 

 

Real numbers 
Probably the greatest pedagogical problem we faced in designing the course was choosing an 
approach to the full set of real numbers that was mathematically accurate, applicable to the 
middle school curriculum, and practical enough to add understanding yet avoid adding 
confusion.  The Beckmann text takes a very concrete and computational approach to this that is 
completely appropriate for elementary teachers, but that does not provide sufficient rigor to 
address the technical issues that can come up in later grades.  The Stevenson text gives two 
statements of the completeness axiom.  The first, “A decimal expansion represents an existing 
number,” is entirely intuitive and not far beyond Beckmann’s approach.  Stevenson also includes 
the very formal definition:  “Every rational sequence of Cauchy sequences has a limit.” This is 
followed with a full mathematical definition of a Cauchy sequence. 

It took mathematics several thousand years to come to complete grips with the intricacies of the 
real numbers.  The decimal number system has the great advantage of hiding many of these 
intricacies.  However, these technical issues remain, and they can appear in the middle school 
classroom.  Early in the course we ask the participants a few questions that touch these issues: 
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1. Of the numbers 0.5 and 0.49999999… (where the 9’s go on forever), which is the 
larger?  

2. What is π?  

3. Compute 2  to 4 decimal places?  
4. What is 1.41422? 

The first question is meant to spark a common debate, and many participants will begin to 
wonder if 0.49999… is a real number at all.  The second question is meant to continue that 
debate.  The typical answer that people agree on is:  “It is 3.1415926… where the decimal goes 
on forever without a pattern.”  The ensuing discussion about what that actually means exposes a 
great deal of confusion about infinite decimals.  The answer to the third question is 1.4142, but 
the answer to the fourth is not 2.  It rounds off to two, but only if you do so properly. 

A purely computational definition of infinite expansions, like that in Beckmann’s book, will 
explain the answer to the first question, and with work, will help with the last pair.  However, π 
is still a problem.  A purely intuitional approach causes trouble in question 1, but it makes π a bit 
easier to swallow.  In a practical sense, the goal for middle school students is to develop a 
reasonable intuition about infinite expansions and exact real numbers strong enough to provide 
them with fluid computational abilities with their approximations.  However, if we are to provide 
middle school teachers with a more profound understanding of the real numbers as a course goal, 
as project objective 1 requires, then we must look beyond the middle school curriculum. 

The best solution seems to be the introduction of a mathematically sound definition of the Real 
Numbers. 

There are a number of mathematical definitions of the real numbers, but the text we use, 
Stevenson, uses Cauchy sequences.  This may be a bit too rigorous for the needs of our 
participants; so we choose a pared down version.  The explorations of continued fractions and 
decimal expansions of rational numbers lead naturally to the ideas of upper and lower bounds of 
numbers.  We take advantage of this and cover these terms carefully as they appear.  Then when 
we are ready to deal with real numbers, we refer to Stevenson’s definition of completeness.  We 
define a (pseudo) Cauchy sequence to be an alternating sequence of upper and lower bounds 

with a difference that approaches zero.  Since continued fractions of numbers like 2  produce 
such sequences, this abstraction can be presented in the context of an increasingly familiar topic.  

The partial quotients for 2  obtained from the real number version of the Euclidean algorithm are 1, 
2, 2, 2, 2, …, where the 2’s go on forever.  The fraction chart one obtains from the partial quotients 
is: 

  1 2 2 2 2 2 2 …. 
0 1 1 3 7 17 41 99 239 …. 
1 0 1 2 5 12 29 70 169 …. 

This method yields a sequence of increasingly accurate fractional approximations of 2  that are 
alternately larger and smaller than the actual value. 
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Thus Stevenson’s version of the Completeness Axiom, “Every rational sequence of Cauchy 
sequences has a limit,” provides a rigorous definition of real numbers in the context of the 
course. 

This definition has the advantage of being mathematically accurate.  (It is basically the Closed 
Interval Theorem.)  At the same time, it also has practical applications.  Knowing a real number 
under this definition means knowing an infinite sequence of upper and lower bounds.  An 
arithmetic problem involving real numbers can be solved by using these bounds to find a Cauchy 
sequence for the answer.  Although this is a theoretical result, it provides a practical method for 
approximating solutions. 

For example, participants are asked to consider the real number given by the infinite decimal:  
0.12121212… This expansion indicates the infinite sequence of upper and lower bounds: 

Lower Upper 
0.1 0.2 
0.12 0.13 
0.121 0.122 
0.1212 0.1213 
0.12121 0.12122 

According to the completeness axiom, this (pseudo) Cauchy sequence identifies a single real 
number.  Whatever this number is, it can be multiplied by 33.  Since all the lower bounds are 
lower than the number, multiplying each them by 33 will give a lower bound on the product.  
The upper bounds work the same way.  Thus 33×(0.12121212…) is given by the sequence 

Lower Upper 
3.3 6.6 
3.96 4.29 
3.993 4.026 
3.9996 4.0029 
3.99993 4.00026 

This Cauchy sequence produces the number 4.  Thus, by the definition of the real numbers, 
33×(0.12121212…) =4.  We must have 0.12121212…= 33

4 .  Participants are then asked to verify 

this equality in several more familiar ways, including the methods given in Beckmann’s text. 

Thus an application of this definition leads naturally to a thorough discussion of decimal round-
off and approximation.  This in turn makes it easy to motivate a detailed look at the impact of 
approximation on the accuracy, and the meaning of calculator and computer calculations. 
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Technology 
The final decision in the design of the course was how technology should be integrated into the 
material.  We do stress the use of calculators, but we simply use them as a calculation tool when 
needed in the course.  The plan is that graphic calculators play an important role in later the 
Algebra and the Probability and Statistics courses.  Instead of using calculators to illustrate 
calculations in the Number class, we use a spreadsheet and computer projection.  Participants 
enter the ATI program with a wide spread of experience with mathematical technology.  Even 
the most experienced, however, do not understand the illustrative power of a spreadsheet in 
lower level arithmetic problems.  From the beginning of the course, examples are illustrated 
using a project work-page from a spreadsheet.  The participants immediately see the advantages 
of this kind of presentation to produce a number of examples rapidly.  And although it not listed 
in the course syllabus, spreadsheet design becomes part of the course.  Further, there were many 
classroom discussions about the effective use of spreadsheet in the middle school classroom and 
how this technology can be used to improve pedagogy.  The introduction of this increasingly 
common form of computer programming into the course fits directly into course goals 2 and 3. 

This extra time devoted to technology is seamlessly integrated into the course and is used to help 
reinforce the participants’ command of arithmetic.  In a homework exercise, participants are 
asked to compute 2100 as accurately as possible by any means possible.  The weakest participants 
often take this as a very simple question to answer, and they give answers like 1.267651E30 
straight off a calculator.  For the most part, the participants recognize that this answer is in 
scientific notation and know that it means 1267651000000000000000000000000.  Of course, not 
all answers in this form are going to be in complete agreement, and this prompts a discussion of 
what “as accurate as possible” means.  It seems inevitable that in a class of middle school 
teachers that, without prompting, at least one person will note that an accurate value of 2100 
cannot end in a 0. 

If the instructors can restrain themselves at this point, the rest of the class will ask this person to 
explain their reasoning.  Further, participants soon discuss the idea that even an integer might be 
approximated.  The ensuing participant driven conversation works directly toward the first 
course goal:  to build confidence in the use of fundamental mathematical principles to explain 
the meaning of a calculation result.  The original question draws participants to recognize the 
implicit approximation in scientific notation and the implications that approximate calculation 
has for exact results and the problems caused by large numbers. 

The participants themselves express a need for the next logical step, finding an exact value of 
2100.  The course materials then lead the instructors to design a spreadsheet that does multi-digit 
addition and multiplication.  This is done on a spreadsheet in base 1,000,000.  To set up this 
spreadsheet, the class first must carefully analyze the grade school algorithms for addition and 
multiplication in base 10.  After a careful and complete review of the familiar decimal hand 
algorithms for these operations and why they work in base 10, the construction of the 
spreadsheet begins.  We do devote classroom time to constructing a working spreadsheet; 
however, we eventually provide a version to replace the one designed in the classroom.  (This 
allows us to ignore certain formatting issues during the class and concentrate on the mathematics 
of the spreadsheet rather than its appearance.)  The participants are now ready to compute 2100 
exactly. 
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Fractions 
There is no question that a complete and thorough account of fractions and rational numbers 
needs to be a major part of this course.  A major pedagogical problem in teaching fractions is 
that fractions have several, closely related, interpretations.  In some sense, the objective in 
teaching fractions to school children is to bring them to a point where they can move effortlessly 
between these interpretations.  However, the differences between these interpretations are 
significant and can easily lead to confusion in learners. 

First, fractions give the number of equal parts of a whole.  However, even under this very first 
introductory meaning of the term, a fraction productively be considered as a division problem.  
While 7

21  still means 21 pieces where 7 pieces are a whole that amounts to 21 divided by 7 which 

is 3 wholes.  By middle school, fractions are also used to represent quantities; that is, rational 
numbers.  This means that 7

21 = 3 because:   

1. If wholes are divided into 7 equal pieces, than three wholes produce 21 pieces. 
2. The fraction 7

21  is equivalent to the fraction 1
3 . 

3. The expressions 7
21  and 3 are the same rational number.  Thus a fractional expression can 

be interpreted as either a division problem, an expression for parts of a whole, or a 
rational number. 

The Arizona Math Standards set a timeline for students to understand these three interpretations.  
In Grade 3 they call for students to “Express benchmark fractions as fair sharing, parts of a 
whole, or parts of a set.” 

However, any third grader intuitively understands the important distinction between 2
1  of a 

whole cookie and 2000
1000  of a whole cookie.  In terms of “fair sharing”, these may be equivalent, 

but they are not the same.  The standards stress the understanding of fractions as part of a whole, 
and how this is related to the operation of division.  Then in Grade 7, these standards call for 
students to “Compare and order rational numbers using various models and representations.”  

Thus a successful 7th grader and should no longer just see the fractions 2
1  and 2000

1000  as 

representing equivalent quantities, but they should be able to identify them as equal rational 
numbers.  The student should still realize that these are not exactly the same when viewed as part 
of a whole, but they represent equivalent quantities.  But in 7th grade, because they are 
equivalent as fractions, students are expected to call these equal rational numbers.  The 
distinctions are subtle, and potentially confusing.  Certainly to meet these goals, teachers must 
teach their students to move fluidly between these three possible interpretations of fractional 
notation.  However, to get students to this point, the teachers need to be quite aware of these 
different points of view and be ready and able to offer explanations using any one.  The teachers’ 
own ability to interpret fractions in slightly different ways is needed to support their ability to 
help their students. 

To increase participants’ awareness of subtlety of statements about fractions, ATI participants 
are asked to fill out an online survey.  The survey consists of 25 statements involving fractional 
notation.  Participants are asked to judge whether they believed the statement was (a) mostly a 
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statement about division, (b) mostly a statement about fractions, or (c) mostly a statement about 
rational numbers.  Some of the statements can be interpreted as any one of these, so the survey 
does accept multiple correct answers.  At the same time, participants are told to select an answer 
that they consider the best interpretation.  One intention of the survey is to foster in participating 
teachers a mathematician’s way of thinking about distinctions between mathematical constructs.  
For example, the statement, “The denominator of 13

5  is 13,” is a statement about a fraction, not 

about a rational number, because there is no single fraction that uniquely represents the rational 
number that can be written as 13

5 .  Some of the statements on the survey are: 

1. 317
51   

2. 2
5

22
55   

3. 2
5

22
55   

4. 11
5

11
27 2  

5. 375.18
11   

6. 53
15 
  

7. 142857.07
1   

8. 6667.03
2   

9. 35 ÷ 14 = 2
5  

10. 2
1

2249
1125   

11. The denominator of 13
5  is 13. 

12. 13
51  is improper. 

13.   144
252

12
5   

14.   5
121

12
5   

15. 21
21
223 


  

 

The survey results become part of an open class discussion.  Participants are asked to defend 
their choices for each question.  There are discussions about what answers are “right” and 
“wrong.” There are discussions about how an expression could and should be interpreted for 
clarity.  The discussions involve mathematical issues and pedagogical issues, and inevitably lead 
to the question of which issue is more important. 

As a conclusion to this exercise, the participants were given a writing assignment to help them 
articulate their understanding of the distinctions between fractions and rational numbers and the 
importance of those distinctions in doing mathematics and in teaching mathematics.  The 
prompts for the writing assignment were: 

1. How important is it to distinguish between fractions and rational numbers in 
practice? 

2. How important is it to distinguish between fractions and rational numbers in 
teaching? 

3. What exactly is a rational number? 

This exercise is aimed squarely toward meeting Goal 2 of the course:  to train participants to 
recognize abstract mathematical constructions in middle school mathematics materials and to 
develop effective pedagogical methods for presenting these difficult concepts in the best way 
possible.  The intrinsic abstract nature of fractions is easily lost to someone who gains the 
working knowledge of them that is expected of a high school student.  Yet, it is exactly the loss 
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of understanding multiple interpretations that makes fractions such a challenge for students into 
their college years. 

Evidence of Impact 

The preliminary results of the project evaluation influenced the direction of the design of the 
number course as they became available.  This section includes excerpts and summaries of their 
reports. 

The evaluation included of an investigation of participating teachers’ content knowledge using 
the Middle School Content Knowledge Survey, a questionnaire to determine implementation 
progress, self reporting by participants, surveys, ratings by principals, determination of academic 
achievement in the participants’ classes through comparison of the standards-based Arizona 
Instrument to Measure Standards (AIMS) and the TerraNova standardized achievement test, and 
observations of the participants using the Reformed Teaching Observation Protocol (RTOP) and 
an Effective Instruction Rubric (EIR).  Initial data were collected from all entering participants, 
and yearly throughout their participation in the program. 

In this article, we concentrate on the three aspects of this ongoing evaluation:  impact on 
classroom teaching techniques, leadership, and content knowledge.  As one would expect, the 
best information is available on the participants from the first offering of the course, and we 
focus on the results from this group to which we refer as Cohort One. 

Initially, the cohort showed improvement in Number Concepts content knowledge, as measured 
by the IRT, with 7 of the 10 people involved demonstrating increased knowledge between the 
pretest and the first year.  By year two, however, the (normed) results had become more mixed.  
Here 6 of the 10 still showed improvement over the pretest, and the range of the results 
increased.  Participants who had shown the most improvement immediately after the number 
course fell back; while participants whose improvements were less dramatic continued to 
improve in year 2.  This cohort will complete the three year program in spring 2010.  In contrast, 
the self reports showed that the participants themselves felt strongly that their knowledge 
steadily increased. 

The data collected on leadership presents some difficulties.  Both cohorts that completed their 
first full year showed an overall drop in leadership skills as measured by principal surveys, even 
though the leadership rubric used showed some small numerical improvement.  This could well 
be the result of the time demands on the participants; however, comparing the results after year 
one, it seemed that Cohort One had more difficulty maintaining and increasing their leadership 
skills than did Cohort Two.  Self reporting indicated that the participants had high expectations 
for themselves and their students because of their participation in the program.  Also, many 
participants managed to find the time to attend and even present at meetings of educators. 

The most positive results come from the measures of classroom teaching practice.  Both the 
RTOP and EIR measures showed marked and steady increases. As described by the developers, 
the Reformed Teaching Observation Protocol (RTOP) was developed as an observation 
instrument to provide a standardized means for detecting the degree to which K-20 classroom 
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instruction in mathematics or science is reformed.  It does not presume that reformed instruction 
is necessarily quality instruction. The EIR is another observational protocol that was designed by 
the project’s evaluation team to measure the use of classroom practices that are well accepted 
and research has shown are effective.  Using RTOP in the area of lesson design, participants 
increased their scores by 48%; in the area of content, they increased by 58%; and in class culture, 
the increased 59%.  In EIR the cohort gained 35%.  Several participants showed a large gain in 
instructional practices, while others made modest gains; however, it was those scoring high at 
baseline that reflected the smaller gain.  Self reports echoed this.  Incidentally, the impact of the 
Education courses Cohort One took appeared here as well with all participants reporting that they 
used research in their teaching either frequently or regularly. 

Lessons Learned 

We learned a great deal when we offered the courses for the first time.  Many of the teacher 
participants expected a stronger workshop format, and they expected to be given materials that 
they could take directly back to their class.  Of course, the intention was to create teacher leaders, 
and it took a while to get the participants to understand this.  As the course progressed, 
participants did come to realize that every mathematical topic was accompanied by a discussion 
of its classroom implications.  These discussions of new mathematics and new approaches to 
familiar mathematics served to ground the course for those participants looking for more 
immediate practical ideas.  These discussions were led by the high school teacher, and they often 
led to vigorous exchanges of ideas among the participants.  It was easy for these discussions to 
wander into other teaching and classroom problems.  However, the high-school teacher became 
quite adept at directing the discussions at critical moments and keeping them focused on the 
mathematics.  Even though each topic was introduced and concluded with a collection of both 
mathematical and pedagogical questions, the participants were much better at introducing the 
educational issues that came with the mathematics.  Also the distinct differences in the academic 
approaches between college students and returning adult learners had a greater impact on the 
course that the first faculty member instructors expected.  Future instructors will be cautioned 
about this issue. 

From the beginning of the design of this course, we were told that fractions were a major 
difficulty in the middle school curriculum.  Even planning for this, we discovered that addressing 
all the conceptual and practical problems students of all ages have with arithmetic fractions is 
extremely difficult.  Many textbook and curriculum authors have addressed this difficulty in 
various inventive ways.  Yet it appears that no one approach ever solves the entire problem. 

In our case, we felt that we had made some progress with the participants in this Number and 
Number Sense course.  However, the preliminary results of evaluation indicate that, to some 
extent, the progress is not long lasting.  The lesson we take from this is that we cannot delegate 
the arithmetic of fractions to only one of the four mathematics content courses we require.  We 
need to make certain that we reinforce and extend participants’ knowledge of fractions in the 
curriculum we develop for the other three courses:  Algebra, Geometry, and Probability and 
Statistics. 
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The real numbers and infinite decimal expansions are the source of a great deal of confusion.  
Middle school teachers, especially those whose mathematical training emphasized elementary 
school concepts, have at best the general intuitive understanding of these topics of the general 
population.  Yet all the teachers we dealt with could cite examples where their students were 
confused by some aspect of these abstract ideas and where they felt unable to help.  Class 
discussions revealed a great many misperceptions about infinite decimals, and it was clear that 
most of the participants did not have a deep enough understanding of the issues involved to even 
recognize the problems.  It does not appear that the mathematics education literature has much 
guidance to offer about dealing with technical issues that can arise from infinite decimals and 
approximate calculation in either the middle school curriculum or in teacher training.  Yet with 
the ubiquitous use of calculators and other machine arithmetic, these issues are unavoidable in 
the middle school classroom; students do ask questions like: 

 Is 33333333.03
1   or do the threes go on forever? 

 Is 0.9999… the same as 1.00000…? 
 How come the answer 0.714286 I get on the calculator is not the same as the answer 7

5  in 

the book or the 0.714285 that I got by hand? 

A middle school teacher needs to have answers for these questions, but how much about those 
answers does the teacher need to understand? A high school certified teacher probably has 
enough background and formal mathematical training to handle these types of problems.  A 
middle school teacher, however, may only have the common general knowledge that, in practice, 
these issues are not a serious problem.  Using good pedagogy, including distinguishing between 
a student exploring the underlying mathematics and one who simply wonders why the calculator 
produced an unexpected answer, a teacher may be able to develop answers to these kinds of 
student questions. 

But how much of the mathematics does the teacher need to understand to be able to use good 
pedagogy? One lesson we learned in developing and teaching this course is that this is not an 
easy question to answer.  Mathematics is not just about convention; so 0.9999… is not equal to 1 
because mathematicians say so.  Mathematics is more precise than that.  However, it may be that 
0. 714286, 7

5 , and 0.714285 are all acceptable answers to a problem because they are close 

enough.  Where is the precision in this?  Eventually we hope that middle school students become 
comfortable enough with numbers that they can ignore these problems like most other people.  
Middle school teachers are tasked for helping students reach this point, but can they do it by 
ignoring those problems themselves?  

Our hypothesis is that they cannot.  We covered real numbers from a relatively abstract point of 
view to clearly illustrate the logical difficulties behind numbers we all take for granted.  We 
spend a good deal of time on approximate calculation and its impact on extended calculations.  
We had the participants track errors caused by rounding and chronicled the explosion of 
mathematical error that division can cause.  Our goal was to be sure that the participants 
understood the underlying technical issues of calculation, that they recognized both the perils of 
explanations that were too detailed and the confusion that too general an explanation can cause.  
We wanted the participants to understand exactly why a calculator is not the final authority on 
the result of a calculation. 
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The main lesson is that there is more to the teaching of basic number concepts than simple 
arithmetic and arithmetic operations.  The conceptual aspects of understanding numbers and 
quantities present a major challenge to teachers of all levels. 

Finally, it is clear that many dedicated teachers across the country return to school to obtain 
higher degrees through night and summer classes.  And they do so very successfully.  However, 
it is a large mistake to discount how incredibly difficult this actually is.  First, the demands of a 
normal teaching load on a middle school teacher of any sort are great and extend well past their 
responsibilities in the classroom.  Also, at the point in a teacher’s career where a higher degree 
will have the most impact, they are often at a point in their lives where family responsibilities are 
at their greatest.  The fact that anyone in this situation would be willing to take on even one 
technical mathematics course and actually put in the effort to learn the material covered is 
astounding. 

A STEM faculty member, a mathematics educator, or a school administrator can quickly 
determine what the content of a professional development course for in-service teachers should 
be.  An experienced university instructor knows how to put a course together that meets that set 
of academic goals.  However, if that course is meant to be part of a program that takes place on 
top of a teacher’s normal schedule, the design of a course is much more difficult.  Designing an 
effective and valuable course for a part time student requires an understanding of the real needs 
of the students.  In our case, the participating teachers responded to the demands of our course 
with an admirable and remarkable dedication.  However, it was clear that these demands took a 
toll on them.  For professional development programs that will have lasting positive impact, we 
cannot rely entirely on the work ethic of the teachers.  State education departments, universities, 
colleges, districts, and individual schools need to work together to make professional 
development a part of teachers’ regular workloads, with appropriate time, support, and 
compensation. 
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