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Abstract 

The Greater Birmingham Mathematics Partnership (GBMP) is a collaborative effort involving 

two institutions of higher education, University of Alabama at Birmingham and Birmingham-

Southern College; one private non-profit organization, the Mathematics Education Collaborative 

(MEC); and nine Greater Birmingham, Alabama school districts.  The project’s work included 

professional development for in-service teachers; teacher leader development; revised 

coursework for pre-service teachers, including a new track for mathematics majors and 

accompanying new certification for middle school mathematics teaching; and community 

outreach.  GBMP conducted seven mathematics content courses, offered as two-week summer 

immersion experiences to teachers in the partner districts. Additional professional development 

for teacher-leaders was provided during the school year. Patterns: The Foundations for 

Algebraic Reasoning was required as a prerequisite to all other courses. In it, mathematics 

teachers explored patterns in an inquiry-based environment using a variety of representations 

including graphs, tables, geometric models, algebraic expressions, and verbal contexts. Course 

participants were K-20 teachers of mathematics who learned mathematics together, which 

allowed them to see how to meet a range of learning needs and to see how the foundation of 

algebraic reasoning is laid throughout the grades. They also discussed articles chosen to help 

participants better understand the theoretical underpinnings of constructivist theory and the 

implications for classroom practice.   Throughout all of the courses, participants engaged in 

generalization and justification as mathematical ways of learning and knowing.  Over the course 

of the five-year project several local teacher-leaders and higher education faculty associated with 

the GBMP completed an internship process to become MEC instructors, and they now teach the 

courses. In the final year of the project, school-based professional learning communities were 

initiated to support teachers in implementing inquiry-based instruction and performance 

assessments. 

Context and Focus of GBMP Professional Development 

In 1990 a group of eight teachers who had studied Piaget’s theory about how children learn were 

meeting regularly after school to talk about how this theory impacted their practice. They helped 

each other learn to listen to students and adjust their questions based on what students 

understood. They supported each other in implementing inquiry-based teaching. These teachers 

soon decided that to influence and educate their colleagues and administrators about what they 

were doing, and to have a broader impact on students, they would host teaching conferences, and 

the Birmingham Constructivist Teachers' Network (the Network) was formed. These annual one-

to-three-day conferences, which sometimes drew as many as 500 teachers from across the nation, 

were held for ten years from 1990 to 2000.  Nationally-known educators such as Deborah Ball, 

Virginia Bastable, Eleanor Duckworth, Cathy Fosnot, Constance Kamii, Cornelia Tierney, and 

others, gave the keynote addresses and Network teachers conducted the breakout sessions.  

Dr. Ruth Parker, founder and CEO of the Mathematic Education Collaborative (MEC), was the 

keynote speaker at the ninth and tenth annual conferences. In her keynote address, she shared 

information about her work that involved in-depth mathematics content courses for teachers and 

educating all the stakeholders in a community about quality mathematics education.  After these 

conferences, the Network teachers decided that to continue to grow as mathematics teachers, 

they needed more in-depth mathematics instruction themselves. As these teachers continued to 
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implement inquiry-based instruction, they found that they needed more content knowledge to be 

able to follow students’ thinking and take students as far as they could go mathematically. MEC, 

a non-profit located in Ferndale, Washington offers a series of nine-day mathematics content 

courses for teachers based on a constructivist and social constructivist theory of learning.  

Additionally, they have a community engagement model that provides learning opportunities 

over time for parents, teachers, administrators and community members as well as a model for 

developing cadres of local teacher-leaders.  The work that the Network had done provided fertile 

ground for extending MEC's work into the Birmingham area. In 2001-2002, educators in the 

Hoover and Mountain Brook systems decided they wanted to replicate MEC’s successful work 

in Colorado and Oregon in the Birmingham area.  They presented this idea to representatives of 

other Birmingham area school systems, UAB, BSC, and MEC. During the subsequent year, 

representatives engaged in discussions about their shared needs and the potential for producing a 

partnership that would successfully address these concerns.  The Greater Birmingham 

Mathematic Partnership (GBMP) was formed with the goal of improving mathematics education 

by enhancing teacher content knowledge, pedagogy and assessment, and educating the greater 

Birmingham community about quality mathematics education. 

Because of strong local interest in GBMP and its goals, local grant funds were obtained in spring 

2002 to support a pilot phase of this project. MEC’s mathematics content course, Patterns: 

Foundations for Algebraic Reasoning, a nine-day, in-depth mathematics content course, was 

scheduled for K-12 teachers in the summer and filled immediately. A second course was added, 

and it promptly filled. MEC offered an evening session on mathematics education for the public 

that was well attended and enthusiastically received.  Along with the school districts, local 

businesses and foundations funded summer courses for the next two years. Again, the summer 

courses were oversubscribed and received overwhelmingly positive reviews. 

Based on the successful pilot efforts with K-12 teachers, GBMP applied for and was awarded a 

$9.96 million NSF MSP grant in September 2004 that targeted middle school teachers, and also 

provided support for IHE faculty and a limited number of fifth grade and high school teachers.  

The partnership includes nine local school systems—Bessemer City, Fairfield City, Homewood 

City, Hoover City, Jefferson County, Mountain Brook City, Shelby County, Trussville City, and 

Vestavia Hills City Schools—as well as two IHEs—The University of Alabama at Birmingham 

(UAB) and Birmingham-Southern College (BSC)—and MEC. 

MEC brought their community engagement model to the partnership, which guided the 

development of the major components of GBMP: 

 summer mathematics content courses with two days of academic year follow-up,  

 development of a cadre of teacher-leaders, 

 community mathematics nights to inform parents and the public about inquiry-based 

mathematics, 

 sessions designed to inform administrators and help them support their teachers in 

changing their classroom practice, 

 revised IHE courses at UAB and BSC for pre-service teachers, and 

 a new track of the mathematics major at UAB and a corresponding new middle 

school mathematics teaching certification in the UAB School of Education. 
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During the NSF funding period, 812 teachers took a total of 1566 courses.  Of these, 536 middle 

and high-school teachers were funded by the MSP award and 276 elementary teachers were 

funded locally (Malone Family Foundation, Community Foundation of Greater Birmingham, 

Hugh Kaul Foundation, Alabama Power, and several school systems). 

The vision of MEC and GBMP was to have elementary, middle grades, and secondary teachers 

in every course, both to benefit from the different perspectives the teachers would bring and also 

to demonstrate how to teach learners with a wide range of abilities where all have access to the 

material, and where learners at every level are challenged to deepen their understanding of 

mathematics.  This range of abilities was extended with the participation in the courses of IHE 

faculty from Education, Mathematics and Engineering who were supported by the NSF grant. 

Contributions from school districts and other local funds supported the participation of 

kindergarten through fourth-grade teachers each year. As a result the course participants ranged 

from kindergarten teachers to college professors. 

The GBMP Summer Mathematics Content Courses 

In the pilot period and at the start of the partnership, MEC brought to GBMP three nine-day 

courses—Patterns: Foundations for Algebraic Reasoning, Geometry and Proportional 

Reasoning, Probability: A Study of Chance—and one 4-day course—Numerical Reasoning.  

During the funding period, Numerical Reasoning was extended to a nine-day course to include 

conceptual development of fractions, decimals, and percents, and three new courses were 

developed jointly by MEC, UAB, and BSC—Patterns II: Further Explorations in the 

Foundations of Algebraic Reasoning, Extending Algebraic Reasoning I: A Deeper 

Understanding of Functions, Extending Algebraic Reasoning II: Data and Modeling.  All seven 

courses will continue to be offered regularly at UAB in the mathematical reasoning track of the 

mathematics major. 

In response to a conference held by the National Academies, and after attending the first MEC 

course, Patterns: Foundations for Algebraic Reasoning, project leaders, the mathematics and 

teacher education faculty at UAB and GBMP and MEC instructors met to create a document that 

would define characteristics of challenging mathematics courses.  The goal was to develop a 

document that would identify common characteristics of challenging courses that would support 

course development and instructional decision-making at every level of the educational system 

from primary classrooms through university-level courses.  The resulting document, reproduced 

below, provides a framework for the work with teachers and administrators. 

Operational Definition of Challenging Courses and Curricula 

1. Big Mathematical Ideas 

 Teach for understanding.  This refers to helping students achieve “an integrated and 

functional grasp of mathematical ideas.”([NRC])  This includes developing 

conceptual understanding, strategic competence, and procedural fluency. 

 Introduce a mathematical idea by posing problems that motivate it. 

 Provide a coherent collection of problems organized around a big mathematical idea. 

 Provide opportunities for students to use multiple representations of a mathematical 

idea. 
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 Provide opportunities for students to explore real-world problems connected to big 

mathematical ideas. 

2. Inquiry and Reflection 

 Engage students in inquiry. 

 Communicate that learning mathematics should be a sense-making process. 

 Ask students to justify their thinking. 

 Ask students to engage in reflection. 

 Encourage students to think critically about mathematical ideas and solutions.  

 Encourage diverse ways of thinking. 

 Communicate that both accuracy and efficiency are important. 

 Incorporate technology when appropriate. 

3. Productive Disposition 

 Help students develop perseverance, , resourcefulness and confidence. 

 Help students become autonomous learners. 

 Provide a safe, respectful learning environment. 

4. Communication 

 Promote the development of mathematical language. 

 Value written communication by asking students to explain their ideas in writing. 

 Value verbal communication by asking individuals and groups to articulate their 

thinking. 

 Value the role of communication in developing intellectual community in the 

classroom. 

 Establish clear expectations for mathematical assignments. 

Patterns: Foundations for Algebraic Reasoning, is required before taking any of the other six 

courses. Teachers are encouraged to take multiple courses.  Grade K-6 teachers are encouraged 

to take Numerical Reasoning after Patterns and then select from among Geometry, Probability 

and Patterns II with the Extending Algebraic Reasoning sequence being the culminating courses. 

Grade 7-20 teachers, after Patterns, are encouraged to take courses that match their interests and 

mathematical background.  This paper will focus on the first course, Patterns: Foundations for 

Algebraic Reasoning, describing the course, what is unique about it, why Patterns was chosen as 

the prerequisite, and what makes this course transformational for teachers. 

Key Features of the GBMP Courses 

All MEC courses offered by GBMP are unique in that they provide powerful learning 

experiences for elementary, middle, and high school teachers, and even university STEM faculty 

members.  Course participants, K-20 teachers of mathematics, spend nine full days learning 

mathematics in a constructivist-based classroom where participants construct their own 

understanding of mathematical ideas while working both as independent problem solvers and in 

collaboration with others. In MEC courses, participants not only learn important mathematics 

content of relevance to students and teachers at K-20 levels, but they also learn about 
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mathematics teaching and learning.  Participants leave the courses knowing what it means to 

learn and teach mathematics in empowering ways because they have observed and reflected on 

their own learning, their peers’ thinking, and characteristics of the environment that impacted 

their experiences. 

Several design aspects of the course, Patterns: Foundations for Algebraic Reasoning, make it an 

optimal initial learning experience for K-20 teachers of mathematics: 

1.  Teaching ‘big’ mathematical ideas 

First, and foremost, the course is designed to teach teachers mathematics.  It is designed around 

‘big mathematical ideas’ related to patterns and algebraic reasoning; mathematical ideas that 

deepen in complexity over time.  (The specific mathematics content of the course can be found at 

www.mec-math.org.)  The K-20 nature of the course allows teachers to see the trajectory of how 

mathematical ideas can be developed across the grades.  Professional relationships are built 

across the K-20 spectrum of participants.  Higher education faculty members are often 

fascinated, and their own work is enhanced, by seeing the visual approaches that elementary 

teachers frequently bring to the work.  They learn about life in K-12 classrooms as they work 

alongside classroom teachers.  K-12 teachers enjoy working on math problems alongside 

university-level mathematicians.  Collegial relationships are formed and many bridges built as 

teachers at every level of the system come to appreciate the work of their colleagues in 

producing mathematically successful students. 

2.  Mathematics as inquiry 

Inquiry and reflection. The Patterns course design is based on the belief that coming to know 

and understand important mathematical ideas takes time and that learning occurs through a 

process of inquiry where students work with each other and the teacher, as well as 

independently, to solve problems and to make sense of the mathematics they are learning.  As 

participants watch their own and their colleagues’ learning develop over the course of the nine 

days, they come to recognize that their own students need to be given adequate time for 

meaningful learning as well.  They come to understand the counterproductive nature of teaching 

fairly isolated skills on an accelerated timeline, and they learn that going deep into the 

mathematical study of a few big ideas can result not only in deeper but also in broader 

mathematical understandings.  In short, we fully appreciate the seemingly contradictory notion 

that by teaching fewer mathematics topics, but teaching them more thoroughly, learners will 

come to understand more mathematics and to understand it as a fabric of connected and related 

ideas. 

Cognitive dissonance.  The principles that guide our decision-making in MEC/GBMP courses 

are as follows.  First, we view confusion—the cognitive dissonance that accompanies “not 

knowing”—as a natural and even desirable part of the process of constructing new 

understandings. We work hard to ensure that course participants have opportunities to struggle 

with problems, to find their own ways of solving them, and to recognize that there is usually not 

just one way to solve a mathematics problem.  In their struggle to make sense of the problems we 

pose, many teachers encounter old math fears or phobias in these courses, and often even those 

who are not fearful still struggle with being in a state of “not knowing” as learners. We have 

purposefully designed courses to provide opportunities for participants to confront and get 

beyond their initial discomfort.  The dilemma for instructors is that we were taught that a 

http://www.mec-math.org/
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teacher’s job is to help or teach by giving clear explanations of how to best solve problems. We 

have learned, however, that this natural inclination to want to put confusion to rest, and to “help” 

those who are struggling, is often counterproductive when it comes to developing mathematical 

understandings and productive dispositions. 

We want to clarify our use of the word “confusion”.  We know that the word means different 

things to different people, and we don’t want to leave the impression that we view all confusion 

as desirable.  Some kinds of confusion need to be cleared up (e.g., when some kind of “social 

knowledge” such as how a symbol is used or how a problem is posed has not been made clear).  

When participants ask for help, instructors interact with them in ways that do not direct their 

thinking.  We have come to believe that teaching by telling rarely leads to the deep mathematical 

understandings or productive mathematical dispositions we hope to promote.  Rather than 

helping solve a problem for a group or individual, instructors ask probing questions to help 

teachers to find their own ways through the problems and honor their struggles. 

Meeting a range of learner needs.  A second idea that permeates our work is the belief that all 

learners are capable of mathematical thinking and of having powerful mathematical ideas.  It is 

important for the instructor to meet a wide range of learner needs while challenging every 

learner.  As teachers who might consider themselves “math phobic” learn to work on 

mathematics alongside teachers who are very confident with mathematics, including STEM 

faculty members at the college level, all participants learn what it is like to learn mathematics in 

a classroom designed to meet a variety of learner needs without labeling students. The courses 

are designed around expandable mathematical tasks that allow access to struggling learners yet 

challenge even the most mathematically sophisticated participant. Each task includes one or 

more challenges that encourage participants to probe deeper into the mathematics of the original 

problem or a related problem. 

Skills practiced within engaging and relevant mathematical contexts.  Third, GBMP recognizes 

that practice with new skills and concepts is essential if students are to learn how to put 

mathematics to work in empowering ways.  In MEC/GBMP courses, such practice is always 

provided within engaging and mathematically important contexts that also serve to build more 

productive mathematical dispositions. 

3.  Mathematics as communication 

Talking mathematics is the norm in all MEC/GBMP courses.  From the very beginning, 

participants are encouraged to see and solve problems in their own ways.  Processing of 

mathematics tasks occurs as participants work together and independently to make sense of the 

problems and whole group processing of experiences occurs on a regular basis.   During 

processing, students are asked to share their diverse ways of seeing and solving problems, and 

reflect on ideas shared.  Participants learn to consider and value diverse ways of seeing 

mathematics.  Whole group processing is done with an eye toward clarifying the mathematics 

involved, finding mathematical relationships within and among the diverse ways of seeing, and 

learning to consider, value, and build upon each others’ mathematical ideas.  Participants learn to 

make and consider mathematically convincing arguments in ways that lay the groundwork for 

more formal proofs. 
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Participants work on tasks for as long as it takes.  Everyone knows that they are not finished with 

a task when, for example, they have an equation for the nth term.  Rather, they are finished when 

they can show how their equation describes the pattern or situation of the problem, and when 

they have reflected on their findings.  While finding an algebraic expression may be quite 

challenging for some primary teachers, finding a geometric representation can be quite 

challenging for secondary teachers who come to the course already comfortable with numerical, 

tabular, or symbolic approaches to solving a problem. 

4.  Productive disposition 

Learning mathematics involves hard work.  The Patterns course is intellectually challenging at 

all times, and can be both intellectually and emotionally exhausting as many teachers struggle to 

learn mathematics while also striving to overcome deeply ingrained math phobias.  Other 

teachers who are confident in their mathematical content knowledge often encounter 

disequilibrium when they are asked to see problems in multiple ways or to solve a problem 

where the solution path is not immediately obvious to them. All participants, no matter their 

level of competence or confidence with mathematics, are engaged with mathematical tasks that 

demand perseverance.  Participants learn what it means to struggle and to experience the 

exhilaration of finally solving a problem or understanding a mathematical idea.  They come to 

know and value that the degree of exhilaration or joy they experience in solving a problem is 

often directly proportional to the amount of struggle and effort expended.  There are many 

private and public celebrations of “AHA!” moments during the course. 

Building productive learning communities.  The Patterns course is designed to model what it 

means to become part of a productive and supportive learning community.  Participants come to 

care about each other’s learning.  They learn that in trying to encourage and understand the 

learning of others, they understand mathematics at a deeper level themselves.  MEC instructors 

make ongoing decisions throughout the course with the goal of developing autonomous learners.  

Participants learn how to ask for help when they need it, and they learn how to help their 

colleagues, and subsequently their students, without “rescuing” them by doing the mathematical 

thinking for them.  Teachers often come to realize that they have been rescuing their own 

students rather than interacting in ways that build the more powerful mathematical 

understandings and dispositions that would diminish the need for future rescue. 

Deepening Teacher Content Knowledge through “Patterns” 

Many mathematicians describe mathematics as the science of patterns.  A disposition to search 

for patterns and the knowledge to recognize and apply patterns of significance to the solving of 

new problems is a major goal GBMP has for teacher participants.  Consequently, we chose 

Patterns as the first experience for teachers in GBMP. 

The mathematical goals of the Patterns course are for participants to develop or deepen their 

understanding of the following: 

 generalizations of patterns that have proven their mathematical power and 

significance; 

 linear, quadratic and exponential functions; 
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 relationships among the various representations  of a function–graphical, numerical, 

geometric, algebraic and verbal / situational; 

 simplifying equations and expressions; 

 multiple ways to solve a mathematical problem; 

 becoming successful problem solvers who are able to use mathematics for making 

sense of situations and information in the world; and 

 what it means to have a productive mathematical disposition. 

The Patterns course provides an especially fertile ground for exploring the connections among 

graphical, algebraic, geometric, numerical, and verbal representations. These multiple 

representations help participants make sense of algebraic expressions. They provide verification 

which leads to confidence in mathematical thinking.  Many participants come to an algebraic 

expression on their own for the first time, rather than being told the expression.  For others, it is 

the first time they have understood many equations they “learned” in their high school and 

college mathematics courses. 

A Typical Day in Patterns 

In an attempt to create for the reader a sense of what it is like to be a participant in the Patterns 

course, we illustrate below one day in the nine-day course.  

As the 35 to 40 participants enter the classroom on about the 4
th

 day of the course, they choose a 

card at random from a deck and go to the table labeled with the card value.  The use of cards 

guarantees that participants sometimes work in random heterogeneous groups of four.  Our goal 

in randomly grouping participants in this manner is that they learn to work collaboratively and 

productively with colleagues who bring diverse perspectives to each small group setting. 

On the board is the outline of the day’s events: 

TENTATIVE AGENDA 

8:30 Number Talk 

8:50 Work on Menu 1 

10:45 Processing ‘Cowpens’ 

11:00 Break 

11:15 Processing ‘Robbie the Robot’ 

11:45 Lunch 

12:30  Article Discussion 

1:15 Continue work on Menu 1 (with graphing pullout) 

2:20 Process ‘Increasing Patterns 5’ 

2:50 Reflective Writing 

HW: Finish required tasks from Menu 1, including graphing ‘Polygon Perimeters’ 

 Read assigned article. 
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Below we provide a menu problem example (cowpens).  Further examples of the day’s activities 

as outlined above are described in the appendix. A menu is a coherent collection of problems 

organized around a big mathematical idea. It is used to surround students with a mathematical 

concept that they encounter in a variety of contexts. Menus consist of both core tasks and 

optional ones (“desserts”).  Menu tasks are posted around the room, with potentially helpful 

manipulatives and other resources such as graph paper and a mathematical dictionary made 

available.  Students choose which task to work on, spend as much time as they need to work 

productively on the task, and decide whether to work independently or with a classmate.   

Menus are also designed to meet a range of learner needs.  The combination of core and dessert 

tasks is designed to ensure that all participants have challenging work to do throughout the menu 

time. Typically, all core menu items are posted at one time.  However sometimes a particularly 

challenging core task is held back and posted a few hours later so that a student does not confront 

it first.  Most participants might be working on tasks like the ‘Handshake Problem’ (how many 

handshakes are needed for n people if everyone shakes hands with everyone else?), the ‘Ice 

Cream Problem’ (how many different double scoops ice cream cones can you create with n 

flavors of ice cream?), or the ‘Diagonals on a Polygon’ problem (how many diagonals are there 

on an n-sided polygon?).  Other participants who complete the core tasks relatively quickly will 

be working to solve dessert problems such as Cube Pattern #4 (described below).  Because the 

same idea is often presented in several menu tasks in different contexts, they can be worked in 

any order.  Participants are not expected to finish all tasks, but are expected to complete the ones 

that will be processed as a group, which are announced in advance.   

A Menu Problem Example 

The two-week Patterns course has two menus; the first mostly consists of linear patterns with a 

few quadratic problems while the second menu is made up mostly of quadratic patterns with a 

few higher-order polynomials and exponential functions. Although many participants choose to 

work alone on menu tasks, the menu often starts with a group task to encourage collaboration.  

On this day, participants begin with a task that they are asked to work on in small groups.  The 

following “Cowpens” problem is posed to the groups: 

The High Mountain Fencing Company is in the business of building cow pens. The company 

ships cow pens to all parts of the United States. Their design for a pen for one, two and three 

cows is shown below. How many sections of fence would it take to hold 100 cows? 1000? Any 

number?  The, admittedly, contrived limitation of always building long, narrow pens is imposed 

on this problem. 

              

 Cow    Cow Cow    Cow Cow Cow  
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Participants are asked to give everyone a moment to think about the problem on their own.  We 

now ask the reader to pause and think of at least two ways in which you could solve this 

problem. 

After individual teachers have had time to develop their own thinking, the groups of four 

investigate the problem together.  When a group finishes the problem, the members move on to 

other menu items.  At a later time, the instructor will bring the whole class together to process 

Cowpens, and will invite volunteers to share their thinking. Most groups take about 20 minutes 

to solve the problem and then have about an hour and a half to work independently or with others 

on other menu tasks. 

Whole group processing of “Cowpens” 
“Processing” constitutes whole-group discussion of designated menu tasks.   Participants are 

asked if they are willing to share their solutions.  As with the number talk described above, the 

instructor often asks “Did anyone see it differently?”  The instructor has in mind the important 

mathematical ideas that should come out in this discussion.  Having students share different 

ways of seeing the solution may make it easier for students to see the connections among the 

solutions. 

As participants share their work on “Cowpens,” various expressions are examined to determine if 

they are equivalent to others, and just different ways of seeing the same thing.  As we share 

Shandra’s thinking below, it will help the reader to know that the instructor has previously 

introduced the notion of a “What-I-See” table, which is an expansion of a T-table, adding a 

column that describes how the user sees the geometry in the problem. 

Shandra: I used a What-I-See table: 

Number of 

cows 

What I See Number of 

tiles 

1 

3 tiles in the top row, 3 tiles in the bottom row, 

and just 2 tiles in the middle row, one at each 

end 

3 + 3 + 2 

2 
4 tiles on top, 4 tiles on bottom, and the same 2 

tiles in the middle row, one at each end 

4 + 4 + 2 

3 
5 tiles on top, 5 tiles on bottom, and 2 tiles in 

middle 

5 + 5 + 2 

…   

n 
n+2 tiles on top, n+2 tiles on bottom, 2 tiles in 

middle 

n+2 + n+2 + 2 
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 For three cows, I saw five tiles on the top row and five tiles on the bottom row and 

then just two tiles in the middle row on the far left and far right. So, for n cows, I saw 

n+2 tiles on top and n+2 tiles on the bottom plus just the two tiles in the middle row 

for a total of T = n+2 + n+2 +2. 

n+ 2 tiles on top row 

 

  
 

  

 
Cow   Cow Cow 

 

  
 

  

 
n+ 2 tiles on bottom 

Instructor: What does your n represent? 

Shandra: The n is the number of cows and the T is the number of tiles needed to build a 

cowpen for n cows. 

Instructor: Can you see what Shandra sees?  [Pause] What questions do you have for her?  

[Pause] Did anyone see it differently? 

Richard: How I saw it was similar to Shandra, but I saw 1 tile on the top and bottom of 1 cow, 

plus 3 on each end. Then I saw 2 tiles on the top and bottom of the 2 cows, plus the 

same 3 on each end. So, for n cows, I saw a total of T = n + n + 3 + 3. [Richard also 

shared a What-I-See table.] 

Instructor: Does Richard’s solution make sense to you?  [Pause]  Is his answer equivalent 

Shandra’s? Can anyone convince us of that? 

Richard:  Sure.  I have T = n + n + 3 + 3 = 2n + 6 and that was the same as Shandra’s answer  

T = n+2 + n+2 +2 = 2n + 6. 

During processing, several varied ways of seeing emerge which provide opportunities for 

simplifying equations and understanding why two algebraic expressions are equivalent.  

Participants also share several graphs of the ‘Cowpens’ relationship and the instructor guides the 

whole group in discussing them, to make sure that certain important features of graphs are 

discussed.  These include lines versus points (continuous versus discrete variable), extending the 

graph to negative values of the independent variable (negative cows?), the meaning of where the 

graph crosses the vertical axis in the context of the task, the meaning of the slope, and graphing 

the situation versus graphing the equation. 

2 tiles in middle row 
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Instructor: The solutions you have shared to the Cowpens problem helped us examine the 

connections among geometric, numerical, graphical, algebraic, and verbal 

representations of the problem.  [This discussion continues.]  

Participants as Learners and Teachers 

In Patterns, teachers are focused on the mathematics nearly all of the time, but constructivist-

based pedagogy is always modeled by course instructors and brought to the forefront with daily 

article discussions and reflective writing.  Participants are asked on the first day of class to hold 

their questions around practice and pedagogy until the end of the course, and they find that most 

of their early questions are answered through their experiences in the course.  On the final day of 

the course, teachers have an opportunity to ask any remaining questions they have about 

pedagogy and implementation of the instruction modeled in the course.  The instructor as well as 

participants who have routinely used inquiry-based instruction offer insights from their 

classroom experience.  

Assessing Learning 

Participants in MEC/GBMP courses experience multiple performance-based assessments that 

optimize student learning including on-demand performance tasks, pre- and post-assessments, 

scoring rubrics, and portfolios.  Participants learn to judge the quality and thoroughness of the 

work they do.  Our overarching goal is to develop students who can think, reason, and use 

mathematics to make sense of information and situations in their world. 

Two overarching beliefs guide our decision-making when it comes to assessment in MEC 

courses:  a good assessment task is a good learning task and multiple measures are essential. 

1. A good assessment task is a good learning task. If we want to know if students can use 

mathematics to solve new and relevant problems, then it is not adequate to simply measure 

their recall of skills and procedures that they have been taught directly.  Participants’ abilities 

with skills and concepts can and should be assessed within the context of their work on 

meaningful performance-based assessment tasks.  Were we to measure skills in isolation, we 

would be promoting the idea that it is okay to teach skills procedurally and in isolation, and 

we believe this to be counterproductive to learning and to the development of productive 

mathematical dispositions.  The assessment system used in MEC courses is designed to 

assess to what degree a participant is able to use mathematics to solve problems.  We know 

that in order to put mathematics to work in productive ways, participants need to understand 

the mathematical relationships involved.   

2. Multiple measures are essential.  The common practice of measuring student outcomes by 

any one single test is misguided and counterproductive.  MEC uses multiple measures over 

time to assess participant learning.  Assessments used in the Patterns course are the kinds of 

assessments that both optimize student learning and teach participants how to learn to judge 

the quality of their own work in mathematics, as well as that of their peers.  In addition to 

continual formative assessment conducted by MEC instructors as they watch and listen to 
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participants work on mathematics tasks and during daily Number Talks, MEC uses multiple 

assessments including the following: 

 Work Ethic Rubric:  During the first morning of the course, after participants have 

been working for about an hour, they are given a rubric and asked to judge their own 

work ethic displayed throughout the hour.  The work ethic rubric ranges from Level 

One: “Interferes with the work of others”; to Level Four: “Works productively and 

challenges self and others on assigned and self-initiated tasks; demonstrates 

perseverance; works collaboratively when opportunity arises; respects the rights and 

work of others; demonstrates craftsmanship in work when appropriate; and, takes care 

of materials and the environment.” Participants reflect in writing on their own work 

ethic demonstrated during the hour.  Volunteers, especially those who scored 

themselves less than a Level Four, are asked to share with the class what level they 

scored themselves, and why.  The work ethic rubric is used early on in the course to 

establish expectations for the learning environment. 

 On-demand Pre-Assessment Performance Tasks:  Prior to any instruction in the 

Patterns course, participants are given two pre-assessment tasks.  The first is a linear 

tile pattern where they are asked to find the number of tiles needed to build the 10
th

, 

the 25
th

 and the n
th

 stage and explain how their answer makes sense.  The second is 

the same task, but the pattern they are given is a quadratic pattern based on triangular 

numbers. Manipulatives are available and participants are given 30 minutes to solve 

the two tasks and explain their reasoning.  Participants work independently on the 

task without talking with others. 

 Quick and Easy Score:  On day four of the course, participants select one task, do a 

quick score of their own work, and leave all of this work on their menus with the 

scored task for the instructor to collect and score over the weekend.  This quick score 

is used by the instructor to gather information about how all participants are doing 

with the mathematics.  It also models a way to give student feedback when teachers 

have lots of work to score yet want to get feedback to students overnight or on a very 

short timeline. Menus are returned to participants on day five of the course, and 

participants are given time to review instructor comments. 

 Scorable Task:  On day five of the course, participants are given a rubric that is 

designed to assess the quality of work on a mathematics task based on four traits that 

include understanding the mathematics of the task, the processes and strategies used 

to solve the task, mathematics as communication, and justification of findings.  The 

rubric is an adaptation of the Oregon Scoring Guide that facilitates judgments on a 

six-level scale.  It is used in MEC courses to help participants learn to judge the 

quality of their own work, and that of their peers.  Small group and whole class 

discussion ensues around the rubric as participants score work on the task and debate 

their group scores while learning to understand the characteristics listed on the six 

levels of the rubric. On day seven of the course, participants select one task of their 

choice and write the task up as a ‘scorable task’ representing thorough and complete 

work.  Each participant then exchanges papers with a colleague who has selected the 

same task and uses the ‘scorable task’ rubric to do a peer score of their colleagues 
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work on the task.  The scored tasks are returned to their authors and pairs discuss the 

scoring, after which each participant does a self-score of his/her own work.  

Participants who also want feedback from the instructor can turn in their tasks for a 

third score. 

 On-demand post-assessment tasks:  Participants are once again given two 

performance tasks, one linear and one quadratic.  Manipulatives are available for 

those who want them, and participants work independently on the tasks for 

approximately 30 minutes. 

 Selecting Most Important Work:  On the afternoon of day eight, participants are given 

quiet time to look over all of their work from the course, and each selects what she or 

he thinks is the most important piece of work.  Each participant writes a cover sheet 

to accompany the piece, telling the instructor and other readers of their portfolio why 

this was the most important piece. 

 Portfolio Share:  On day nine, the final day of the course, participants bring their 

course portfolios that include: the most important piece of work; the pre- and post-

assessment tasks; another scored task from the course; written reflections on himself 

or herself as a learner and as a teacher of mathematics; an on-demand assessment 

task; and a letter to an administrator or colleague synthesizing the ‘big ideas’ from the 

course and outlining the kinds of support needed as the teacher returns to the 

classroom and works to advance his or her practice.  During the portfolio share, 

participants sit in groups of three of their own choosing.  Each participant is given 15 

minutes to share his/her portfolio.  Colleagues are then given five minutes to provide 

feedback on each portfolio.  The use of portfolios to assess learning helps both 

participants and the instructor assess growth in understanding of mathematics and 

mathematical dispositions over time.  The reflective writing tasks included in the 

portfolios help teachers reflect on their own and their colleagues’ learning and on 

their instructional goals for when they return to their own classrooms. 

MEC/GBMP Course Instructors 

Over the course of the five-year duration of GBMP, several local teacher-leaders and higher 

education faculty members from the University of Alabama at Birmingham and Birmingham-

Southern College have interned with MEC and now teach the courses.  There are several 

characteristics that MEC considers essential prior to inviting individuals to intern as course 

instructors. 

 Comfort with the mathematics of the course as demonstrated by individuals’ work as 

learners in the course; 

 Experience in teaching students within a constructivist-based classroom in ways 

aligned with the instructional and assessment practices modeled in MEC courses.  

Course instructors must be firmly rooted in constructivist and social constructivist 

theories about teaching and learning; 
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 The ability to effectively challenge even those students who come to the course 

knowing more mathematics than the instructor; 

 A willingness to try new ideas and practices and to talk openly with participants and 

other MEC instructors about what is working and what is not working in their own 

practice; 

 Demonstrated poise in working with adult learners; and 

 A productive disposition as a learner who engages and stretches mathematically and 

who demonstrates perseverance and a love of mathematics as a participant in MEC 

courses. 

With rare exceptions, MEC instructors first attend MEC courses as learners themselves, then are 

invited to attend again at MEC expense to view the course through an instructor lens.  Finally, 

invitees attend the course a third time as interns where they share responsibility for instruction 

and assessment with experienced MEC instructors.  Finally, if there is a good match, interns are 

invited to become MEC instructors.  New instructors are most often asked to teach a course in a 

community where other instructors are teaching the same or a different MEC course so that they 

have colleagues they can bounce ideas off of as they teach solo for the first time. 

Evidence of Impact 

The research team used four measures to assess the impact of Patterns on teachers’ content 

knowledge:  a pre-post performance assessment, a modified version of the Learning Mathematics 

for Teaching Project’s Test of Content Knowledge for Teaching Mathematics-Patterns (CKTM-

Patterns), a rubric-scored course portfolio, and an observational behavioral checklist.  

Teachers were scored on a pre-post performance assessment task using an adapted version of the 

six-point Oregon Department of Education scoring rubric for performance assessments in 

mathematics. The median score increased two points on most rubric dimensions. A Wilcoxon 

Signed Ranks Test showed the increases from pre-assessment to post-assessment on each 

dimension to be statistically significant (p≤0.05). 

In addition to the performance assessment, the CKTM-Patterns was administered to teachers at 

the beginning and end of the two-week Patterns course (N=314).  There was a 3-point mean 

score increase (out of 31 items) from pre to post administration, which yielded a 0.5 effect size. 

The CKTM-Patterns was administered longitudinally to a sample of teachers (N=35) following a 

second or third course (whose content was unrelated to Patterns). There was a pre-post mean 

increase of 2.86 points, and a pre-post longitudinal mean increase of 3.58 points. This evidence 

suggests that content acquired in the Patterns course is sustained, even improved, over time. 

Other evidence of teacher understanding can be derived from analysis of portfolios generated 

during summer courses, which contain reflective pieces by the teacher, self-selected pieces of 

work, pre- and post- assessments, and a summative on-demand task. A sample of portfolios was 

rated each year on a four-point rubric with five dimensions—problem translation, mathematical 

procedures, productive disposition, inquiry and reflection, and justification and communication. 

Frequency results of consensus judgments among three raters and median scores on each 
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dimension indicated more than half of the sample demonstrated performance that was at or above 

level 3 on each dimension.  

An observational behavioral checklist was used to monitor changes in teacher participants’ 

behavior throughout the two weeks.  In years 3-5, three course participants were chosen at 

random from each section of Patterns.  Each was observed three times over the two-week 

course—on the first day, on the fourth day, and on the eighth day.  Observations took place when 

participants were working in groups or working on tasks with other participants. The table shows 

the number and percentage of participants who exhibited a given behavior at a given time for 

N=30 teachers.  

It appeared that meaningful, observable change in teachers’ mathematics understanding and 

communication occurred in that second week of instruction, particularly in the areas of 

productive disposition and communication. Most behaviors were observed for fewer than 5 of 

the participants on the first day. For most of the behaviors on the checklist, fewer than half of 

participants demonstrated evidence by the end of the first week of instruction.  However, by the 

end of the second week, there was evidence of all behaviors from a majority of participants.  

CCC Dimension Day 1 Day 4 Day 8 

Understanding of Mathematical 

Ideas 

   

Uses variables to describe 

unknowns 

4 (13%) 12 (40%) 29 (97%) 

Explains why equations make 

sense geometrically 

2 (7%) 9 (30%) 23 (77%) 

Represents linear and quadratic 

equations in variety of ways 

0  5 (17%) 19 (63%) 

Productive Disposition    

Persists when answer is not 

known 

0  13 (43%) 28 (93%) 

Asks for guidance but not 

answers 

3 (10%)  9 (30%) 26 (87%) 

Tries variety of strategies for 

approaching problem 

3 (10%) 20 (67%) 28 (93%) 

Inquiry and Reflection    

Makes extensions and 

connections beyond immediate 

problem 

0  5 (17%) 22 (73%) 

Explores why it works and 

whether it will always work 

0 2 (7%) 16 (53%) 

Confusion and mistakes lead to 

further exploration 

6 (20%) 20 (67%) 30 (100%) 

Communication     

Explains reasoning fluently 0  5 (17%) 24 (80%) 

Asks probing questions 6 (20%) 11 (37%) 28 (93%) 

Shares ideas with class 12 (40%) 17 (57%) 29 (97%) 
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Lessons Learned 

Our partnership learned valuable lessons which allowed us to improve our content courses.  First, 

we found that graphing was a weakness for many participants, even at the end of the Patterns 

course.  Patterns has two Menus and, initially, graphing was only incorporated into Menu 2.  To 

address the issue, we intentionally asked participants to graph patterns from Menu 1 and, during 

whole-class processing, emphasized the connections among the graphical, algebraic, numerical, 

geometric, and verbal descriptions of the patterns.  

A second finding was that, when asked to build geometric patterns and search for a relationship 

between the step number and the total number of tiles required to build that step of a pattern, 

participants are often drawn to a recursive formula that describes the number of tiles required to 

build the nth step, T(n), in terms of the number of tiles required for the previous step, T(n-1).  

Sometimes participants focused on a recursive formula to the extent that it inhibited their success 

in finding a closed-form formula that describes T(n) in terms of the step number n.  To address 

this, we changed the format of the problems.  Originally, we had listed the first three or four 

steps of the pattern in order and asked the participants to build the next two steps and, eventually, 

to find the number of tiles required to build the n
th

 step.  We redesigned the tasks so that we 

provide several steps that are neither consecutive nor in numerical order (for example, see the 

“Increasing Patterns 5” in appendix).  We found that breaking the mold of building the pattern in 

order, coupled with the introduction of expanded ‘What I See’ tables described above 

emphasized the relationship between the step number (the input) and the number of tiles (the 

output) and helped participants to find a closed-form formula for themselves. 

At the onset of the project, GBMP intended to develop three new courses, the first of which was 

to be Extending Algebraic Reasoning.  This course was intended to extend and deepen an 

understanding of algebra and continue to emphasize the connections among different 

representations while making use of graphing calculator technology.  The first summer the new 

course was offered, we found that, for many participants, there was too big a jump in the level of 

material between the Patterns course and Extending Algebraic Reasoning.  To address this 

concern, we developed an intermediate course, Patterns II, to provide more experience with the 

material in the Patterns course and extend the material to include transformations of linear and 

quadratic functions and more experience with graphing and symbolic manipulation.  The 

Patterns II course has turned out to be a great success and very popular. 

A final change in terms of course offering concerns the Probability and Data Analysis course.  

Initially, MEC had one nine-day course designed to cover both topics.  However, we learned that 

teachers needed more time to develop a deep understanding of the probability topics and so we 

revised the course in order to focus exclusively on probability for the full nine days.  MEC’s 5-

day Data Analysis course will be offered for the first time in summer of 2011. 

The final lesson learned focuses on pedagogical knowledge.  Two important and intertwined 

goals are for participants to deepen their content knowledge and experience the power of an 

inquiry-based learning environment.  Both objective and performance-based tests of content 

knowledge provided evidence of growth in content knowledge.  Qualitative measures indicated 

that most teachers found experiencing a challenging, inquiry-based learning environment first-

hand to be a transformational experience and reported the desire to radically change their own 
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classrooms to provide this type of experience for their students.  However, after they returned to 

their schools, teachers faced barriers to implementation.  

Although most teachers left the Patterns course with the desire to provide an inquiry-based 

learning environment for their students, a major internal barrier is that they did not feel confident 

about their ability to provide an inquiry-based approach to their course of study.  Not having 

seen a model of a school year taught in this way and not having tried to lead mathematical 

discussions through questioning left many teachers feeling that they needed more practical 

information in order to implement inquiry-based instruction.  To address this barrier, in the final 

year of GBMP Phase I, twelve teacher-leaders began facilitating school-based professional 

learning communities (PLCs) focused on implementing inquiry-based instruction.  These PLCs 

studied articles, books and video clips to facilitate professional conversations focused on 

improving mathematics instruction in their schools.  In addition, they recognize the need for 

assessment practices to become more aligned with inquiry-based instruction.  The combination 

of an intensive two-week mathematics course during the summer and school-based professional 

learning communities during the academic year provides teachers with the opportunity to deepen 

their own content knowledge and support for providing a powerful learning environment for 

their students. 

In addition to the internal barriers, participants identified specific external barriers to 

implementation.  These included a lack of curricular materials aligned with inquiry-based 

pedagogy, administrators who do not actively support inquiry, concerns that parents might react 

negatively to change, and the pressure to cover material associated with high stakes testing.  

GBMP recognized that these are barriers outside of the teachers’ control.  MEC’s community-

engagement model attempts to address some of these factors by regularly holding sessions for 

parents and administrators.  Parents overwhelmingly rate these sessions as informative or 

extremely informative.  These sessions provide parents a glimpse of what it means to understand 

and make sense of mathematics.  The true power of what it is like to learn mathematics in an 

inquiry-based learning environment, however, is described in numerous teacher portfolios with 

comments such as: 

 “This course was such an enlightening and beneficial experience.  I look at math in a 

new light.  It makes so much more sense now.” 

 “The teacher provided a life-changing curriculum framework as she modeled 

applications, questioning, management, and analyses in an engaging environment.” 
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Appendix 

In this appendix, we continue our description of a typical day’s activities as outlined on page 9.  

The typical day begins with a Number Talk. 

Multiplication Number Talk 

The day begins with a Number Talk on multiplication (previous day’s Number Talks have 

addressed addition and subtraction).  Increasing participants’ numerical reasoning is a priority 

goal in the Patterns course, and Number Talks are a major vehicle for accomplishing this goal.  

During Number Talks participants work to solve computational problems mentally. They are 

encouraged to solve problems in their own ways.  When everyone has had time to think about a 

given problem, they share their methods and solutions with each other, and examine 

mathematical ideas as they reflect on and talk about their varied solutions.  Flexible thinking, 

efficiency, and accuracy of results are emphasized, and mathematical connections between 

different solutions are investigated.  In addition to learning to compute flexibly, participants 

build foundational skills and understandings of mathematical concepts such as place value and 

the arithmetic properties as they ‘talk mathematics’ on a daily basis.  Flexible numerical 

reasoning is the goal.  For example, the instructor poses the following problem on the overhead: 

16  27 

We ask the reader to pause to think of at least two ways of solving this problem mentally before 

reading on. 

Computation problems are often, but not always, posed horizontally so as to not predispose the 

participants to thinking in terms of standard algorithms that arrange the numbers vertically.  

After giving sufficient time for all participants to solve the problem without writing anything 

down on paper, the instructor asks for answers, writing each on the board (including incorrect 

answers, if any). Then the instructor asks if someone will share their strategy for solving the 

problem (and if there are multiple answers, asks which answer they are defending). Tenisha 

defended 432. 

Tenisha:  I changed 27  16 to (25 + 2)  16.   

25  16 is a quarter of 1600 or 400.    

2  16 is 32.   

So 400 + 32 is 432. 

Instructor: Does anyone have a question for Tenisha? [Pause] So you found it easier to think 

about 27  16 instead of 16  27? Will that always work? Did anyone notice what 

property Tenisha was using here? [Several participants reply that it is the 

commutative property of multiplication.]  

Instructor: How about when Tenisha thought about 27 as 25 + 2 and then multiplied each part by 

16? [The instructor writes the equation:] 

 (25 + 2)  16  =  (25  16)  +  (25  2) 

 Will that always work? How do you know?  
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Dennis: Tenisha was using the distributive property when she broke the 27 apart [Dennis drew 

the diagram below.] 

 25 2 

16 400 32 

Instructor: Number Talks provide a strong foundation for success with algebra.  When children 

are used to breaking numbers apart and putting them back together, they are using the 

same properties that are used in algebra. When they get to algebra, children continue 

to put arithmetic properties to work with variables as they have been doing with 

numbers for a long time during Number Talks.  

Instructor: Who solved this problem in a different way? [Pause] 

Tonya: I halved 16 and doubled 27 to change the problem to 8  54.   

Then I did 8  50 is 400 and 8  4 is 32.   

I added 400 and 32 to get 432. 

[Tonya drew the following diagram to explain her method for solving the problem.] 

 27    

16 
  54 

 8   

 16 x 27  8 x 54 

Instructor: Does Tonya’s solution make sense? [Pause] Will her method always work? [Pause] 

How do you know? [The reader may have observed that multiplicative inverses and 

multiplicative identity are at play here.  This will be discussed in future Number Talks.] 

Number Talks are a daily fixture in the Patterns course.  The open array models above lay the 

foundation for later Number Talks around algebraic expressions such as (x + 1)(x + 2). 

 x 1 1 

x x
2 

x x 

1 x 1 1 
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Processing ‘Robbie the Robot’ 

The Robbie the Robot appears on Menu 1, and participants were told the previous day that the 

problem would be processed today. 

“Below are 1 year old, 2 year old, and 3 year old pictures of Robbie. Build Robbie at age 4.  

Describe in words what Robbie would look like at age 10.  What does Robbie look like at age n 

and how many blocks does it take to build him?” 

 

Students will be told during menu time that they should also graph Robbie’s three parts—head, 

limbs, and body—on the same axes.  In processing Robbie, equations and graphs for each of his 

parts will come up, contrasting constant (the head), linear (the limbs), and quadratic (the body) 

functions.  If it does not come up on its own, the instructor will ask the class to predict what the 

graph of the total number of blocks needed to construct Robbie would look like. 

Lunch 

It is not unusual during the lunch hour for teachers to stay in the classroom to eat so that they can 

work on a menu task they can’t let go of.  By the time the instructor returns from lunch, nearly 

everyone is back working on menu tasks without having been directed to go to work. 

Article (homework) Discussion 

After lunch, the whole class discusses an article that was assigned for homework the previous 

evening, entitled, “Constructivism: A Theoretical Revolution for Algebra,” by Donald Blais 

(1988).  Homework reading assignments are purposefully structured to ensure that participants 

dig deeply into the readings.  Teachers read assigned articles daily and come to class prepared to 

share in small groups what they determine to be three most important ideas in the assigned 

reading.  Small groups then work together to come to consensus about the three most important 

ideas they as a group will contribute to the class discussion that ensues.  Articles are chosen that 

help teachers better understand the theoretical underpinnings, challenges and benefits of 

constructivist-based mathematics classrooms.  Reading these articles often prompts teachers to 

reflect on their own classroom practice and class discussion involves both theoretical elements 

and practical concerns that teachers have about implementation of constructivist techniques in 

their instruction. 
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Continue work on Menu 1 (with graphing pullout) 

Since participants work alone or with a colleague during menu time, the instructor is often 

available to work with individual students or small groups.  During this menu time, the instructor 

offers a small group pull-out session on graphing for those who want more help with that topic.  

Participants who are interested in the announced topic self-select to join a pull-out group.  

Today’s pull-out session focuses on graphing some of the functions that arise in the menu items.  

Another day, the pull-out session is designed for teachers who want additional support in finding 

algebraic representations of linear patterns.  Pull-out sessions are one way the instructor 

differentiates instruction by providing extra help tailored to the needs of various individuals.  

The dessert tasks provide another means of differentiation during menu time for those who seek 

additional challenges. 

Processing ‘Increasing Pattern 5’ 

A few stages of ‘Increasing Pattern 5’ are shown below and participants are asked how many 

tiles it would take to build any building (adapted from: Developing Number Concepts Using 

Unifix Cubes by Kathy Richardson).  The reason the buildings are not listed as stages (step 

number) 1, 2, 3, etc., in order, is to try to not habituate the student to think only of the recursive 

relationship between successive stages.  

 
 Stage 7 Stage 4 Stage 6 

Some participants solved this problem relatively quickly while others worked on it for several 

hours over 2- 3 days.  The flexibility of the menu format allows participants to spend varied 

amounts on this and other tasks.  Whole group processing happens when everyone has time to 

solve the problem.  As usual with whole class processing, the instructor starts by asking for 

volunteers to share their work.  

Patricia: I was building stage 3, moving tiles around, and I realized I could “left justify” stage 

3 to look like this (the diagram on the right, below). 
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 Then I put two copies of stage 3 together like this [see below].  Now it’s easy to count 

that there are 3  4 tiles in all, but that’s twice as many as I wanted, so there’s really 

only (3  4)/2 tiles in stage three.  For stage n there would be [n  (n+1)]/2 tiles. 

        

        
3 

       

                

         4 

Other participants used Gauss’ theorem for adding consecutive integers, and still others solved 

the problem by completing a square with color tiles, dividing the square in half, and adding back 

½ of each tile on the diagonal for a result of 

½ n
2
 + n/2 

 

       

       

       

½ n2 + n/2 

A participant asked about similarities he observed between two different solutions and this 

discussion continued. 

The pattern above is an example of an expandable task.  An initial access point is to build several 

additional steps in the pattern, further exploration allows one to determine the number of tiles 

needed for the 10th and 100th steps, and a more algebraically sophisticated problem is to find the 

number of tiles needed for the nth step.  This problem is further expanded upon in a dessert task 

that is a three-dimensional analog of the pattern (called Cubes Pattern #4).  Several participants 

including high school and university mathematics faculty members wrestled with this problem 

for hours.  Since not all participants work on dessert tasks, they are not processed with the whole 

class, but discussion within small groups or with the instructor often occurs during menu time. 

Reflective Writing 

At the end of the day, the instructor gives participants a reflective writing prompt: 

Spend a few minutes writing reflectively about your experiences in this course so far.  

Your reflections might include: 

-new ideas you have encountered 

-shifts in your thinking 
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-successes you’d like to share 

-areas of dissonance 

-things you are continuing to ponder 

-anything else you’d like to share… 

The purpose of this assignment is to give participants a chance to reflect on their learning 

experience during the day.  For some participants, inquiry-based learning is a huge shift from 

their previous experiences with learning mathematics.  Reflective writing gives them a chance to 

think about the specifics of their learning, e.g., what it feels like to work in a small group; what 

do you do when you hit a road block and are not sure what to do next in a problem (what actions 

on the part of the instructor or other participants or yourself helped you get beyond the 

roadblock); when someone needs help, what are effective ways of providing it?  After 

participants have had a few quiet minutes to write, the instructor asks if there is anyone who 

would like to share their reflections with the whole class. 

Although this is where we end our visit to the Patterns classroom, if you returned a few days 

later, you would find participants working on the ‘Handshake Problem’, the ‘Ice Cream 

Problem’, or the ‘Diagonals on a Polygon’ problem.  You might hear a teacher working on the 

ice cream problem exclaim “this is like the handshake problem but it starts in a different place!”  

The menus are purposefully designed so that participants confront the same mathematical idea in 

different contexts.  For most participants, a familiar problem set in an unfamiliar context 

genuinely feels like a completely new problem.  By making connections between related 

problems and synthesizing the underlying mathematical ideas, teachers build deep 

understandings and bring that confidence with them as they attack new problems and continue 

their search for patterns, laying the foundation for algebraic reasoning. 


